The configuration for the enrichment module, the module primarily responsible for enrichment and threat intelligence enrichment, is defined by JSON documents stored in zookeeper.
There are two types of configurations at the moment, global and sensor specific.
There are a few enrichments which have independent configurations, such as from the global config. You can also configure the enrichment topology’s writer batching settings.
Also, see the “Global Configuration” section for more discussion of the global config.
Metron supports enrichment of IP information using GeoLite2. The location of the file is managed in the global config.
The location on HDFS of the GeoLite2 database file to use for GeoIP lookups. This file will be localized on the storm supervisors running the topology and used from there. This is lazy, so if this property changes in a running topology, the file will be localized from HDFS upon first time the file is used via the geo enrichment.
The size of the batch that is written to Kafka at once. Defaults to 15 (size of 1 disables batching).
The timeout after which a batch will be flushed even if batchSize has not been met. Optional. If unspecified, or set to 0, it defaults to a system-determined duration which is a fraction of the Storm parameter topology.message.timeout.secs. Ignored if batchSize is 1, since this disables batching.
The sensor specific configuration is intended to configure the individual enrichments and threat intelligence enrichments for a given sensor type (e.g. snort).
Just like the global config, the format is a JSON stored in zookeeper. The configuration is a complex JSON object with the following top level fields:
Field | Description | Example |
---|---|---|
fieldToTypeMap | In the case of a simple HBase enrichment (i.e. a key/value lookup), the mapping between fields and the enrichment types associated with those fields must be known. This enrichment type is used as part of the HBase key. Note: applies to hbaseEnrichment only. | "fieldToTypeMap" : { "ip_src_addr" : [ "asset_enrichment" ] } |
fieldMap | The map of enrichment bolts names to configuration handlers which know how to split the message up. The simplest of which is just a list of fields. More complex examples would be the stellar enrichment which provides stellar statements. Each field listed in the array arg is sent to the enrichment referenced in the key. Cardinality of fields to enrichments is many-to-many. | "fieldMap": {"hbaseEnrichment": ["ip_src_addr","ip_dst_addr"]} |
config | The general configuration for the enrichment | "config": {"typeToColumnFamily": { "asset_enrichment" : "cf" } } |
The config map is intended to house enrichment specific configuration. For instance, for the hbaseEnrichment, the mappings between the enrichment types to the column families is specified.
The fieldMapcontents are of interest because they contain the routing and configuration information for the enrichments.
When we say ‘routing’, we mean how the messages get split up and sent to the enrichment adapters. The simplest, by far, is just providing a simple list as in
"fieldMap": { "geo": [ "ip_src_addr", "ip_dst_addr" ], "host": [ "ip_src_addr", "ip_dst_addr" ], "hbaseEnrichment": [ "ip_src_addr", "ip_dst_addr" ] }
Based on this sample config, both ip_src_addr and ip_dst_addr will go to the geo, host, and hbaseEnrichment adapters.
For the geo, host and hbaseEnrichment, this is sufficient. However, more complex enrichments may contain their own configuration. Currently, the stellar enrichment is more adaptable and thus requires a more nuanced configuration.
At its most basic, we want to take a message and apply a couple of enrichments, such as converting the hostname field to lowercase. We do this by specifying the transformation inside of the config for the stellar fieldMap. There are two syntaxes that are supported, specifying the transformations as a map with the key as the field and the value the stellar expression:
"fieldMap": { ... "stellar" : { "config" : { "hostname" : "TO_LOWER(hostname)" } } }
Another approach is to make the transformations as a list with the same var := expr syntax as is used in the Stellar REPL, such as:
"fieldMap": { ... "stellar" : { "config" : [ "hostname := TO_LOWER(hostname)" ] } }
Sometimes arbitrary stellar enrichments may take enough time that you would prefer to split some of them into groups and execute the groups of stellar enrichments in parallel. Take, for instance, if you wanted to do an HBase enrichment and a profiler call which were independent of one another. This usecase is supported by splitting the enrichments up as groups.
Consider the following example:
"fieldMap": { ... "stellar" : { "config" : { "malicious_domain_enrichment" : { "is_bad_domain" : "ENRICHMENT_EXISTS('malicious_domains', ip_dst_addr, 'enrichments', 'cf')" }, "login_profile" : [ "profile_window := PROFILE_WINDOW('from 6 months ago')", "global_login_profile := PROFILE_GET('distinct_login_attempts', 'global', profile_window)", "stats := STATS_MERGE(global_login_profile)", "auth_attempts_median := STATS_PERCENTILE(stats, 0.5)", "auth_attempts_sd := STATS_SD(stats)", "profile_window := null", "global_login_profile := null", "stats := null" ] } } }
Here we want to perform two enrichments that hit HBase and we would rather not run in sequence. These enrichments are entirely independent of one another (i.e. neither relies on the output of the other). In this case, we’ve created a group called malicious_domain_enrichment to inquire about whether the destination address exists in the HBase enrichment table in the malicious_domains enrichment type. This is a simple enrichment, so we can express the enrichment group as a map with the new field is_bad_domain being a key and the stellar expression associated with that operation being the associated value.
In contrast, the stellar enrichment group login_profile is interacting with the profiler, has multiple temporary expressions (i.e. profile_window, global_login_profile, and stats) that are useful only within the context of this group of stellar expressions. In this case, we would need to ensure that we use the list construct when specifying the group and remember to set the temporary variables to null so they are not passed along.
In general, things to note from this section are as follows:
Field | Description | Example |
---|---|---|
fieldToTypeMap | In the case of a simple HBase threat intel enrichment (i.e. a key/value lookup), the mapping between fields and the enrichment types associated with those fields must be known. This enrichment type is used as part of the HBase key. Note: applies to hbaseThreatIntel only. | "fieldToTypeMap" : { "ip_src_addr" : [ "malicious_ips" ] } |
fieldMap | The map of threat intel enrichment bolts names to fields in the JSON messages. Each field is sent to the threat intel enrichment bolt referenced in the key. Each field listed in the array arg is sent to the enrichment referenced in the key. Cardinality of fields to enrichments is many-to-many. | "fieldMap": {"hbaseThreatIntel": ["ip_src_addr","ip_dst_addr"]} |
triageConfig | The configuration of the threat triage scorer. In the situation where a threat is detected, a score is assigned to the message and embedded in the indexed message. | "riskLevelRules" : { "IN_SUBNET(ip_dst_addr, '192.168.0.0/24')" : 10 } |
config | The general configuration for the Threat Intel | "config": {"typeToColumnFamily": { "malicious_ips","cf" } } |
The config map is intended to house threat intel specific configuration. For instance, for the hbaseThreatIntel threat intel adapter, the mappings between the enrichment types to the column families is specified. The fieldMap configuration is similar to the enrichment configuration in that the adapters available are the same.
The triageConfig field is also a complex field and it bears some description:
Field | Description | Example |
---|---|---|
riskLevelRules | This is a list of rules (represented as Stellar expressions) associated with scores with optional names and comments | see below |
aggregator | An aggregation function that takes all non-zero scores representing the matching queries from riskLevelRules and aggregates them into a single score. | "MAX" |
A risk level rule is of the following format:
An example of a rule is as follows:
"riskLevelRules" : [ { "name" : "is internal", "comment" : "determines if the destination is internal.", "rule" : "IN_SUBNET(ip_dst_addr, '192.168.0.0/24')", "score" : 10, "reason" : "FORMAT('%s is internal', ip_dst_addr)" } ]
The supported aggregation functions are:
An example configuration for the YAF sensor is as follows:
{ "enrichment": { "fieldMap": { "geo": [ "ip_src_addr", "ip_dst_addr" ], "host": [ "ip_src_addr", "ip_dst_addr" ], "hbaseEnrichment": [ "ip_src_addr", "ip_dst_addr" ] } ,"fieldToTypeMap": { "ip_src_addr": [ "playful_classification" ], "ip_dst_addr": [ "playful_classification" ] } }, "threatIntel": { "fieldMap": { "hbaseThreatIntel": [ "ip_src_addr", "ip_dst_addr" ] }, "fieldToTypeMap": { "ip_src_addr": [ "malicious_ip" ], "ip_dst_addr": [ "malicious_ip" ] }, "triageConfig" : { "riskLevelRules" : [ { "rule" : "ip_src_addr == '10.0.2.3' or ip_dst_addr == '10.0.2.3'", "score" : 10 } ], "aggregator" : "MAX" } } }
ThreatIntel alert levels are emitted as a new field “threat.triage.level.” So for the example above, an incoming message that trips the ip_src_addr rule will have a new field threat.triage.level=10.